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B-splines and splines
A rough (and not fully precise) characterization of a spline is a piecewise poly-
nomial that is as smooth as possible without becoming a single polynomial.

In the following, we define a basis for splines, the collection of B-basis func-
tions, short B-splines. B-splines express a spline in B-form, i.e. as a linear
combination of B-splines.

The B-form is particularly well-suited for applications such as graphics and
geopmetric modelling, as well as numerical computations. Compared with other
representations, B-splines have the advantage built-in continuity between the
polynomial pieces – a property that is retained by linear combinations. Further
desirable properties become clear as we develop the subject.

(The letter B stands for ‘basic’ and is denoted by capital letters, for historical
reasons even though it is scalar-valued.)

B-spline definition by recursion

Let
t(i:j) := ti, ti+1, . . . , tj (1)

be a nondecreasing sequence of scalars, i.e. tk+1 ≥ tk. The scalars are called
knots. Then the B-spline of degree d is defined recursively as follows.

B(u|t(i:i+1)) :=

{
1 if ti ≤ u < ti+1

0 otherwise,

B(u|t(i:i+d+1)) := `(u|i,i+d)B(u|t(i:i+d))

+ (1− `(u|i+1,i+d+1))B(u|t(i+1:i+d+1))

where `(u|i,j) :=

{
u−ti
tj−ti if ti 6= tj

0 otherwise.

X5– Verify that for tj+d+1 > tj , B(u|t(j:j+d+1)) > 0 on the interval (tj , tj+d+1).

X5– Show that a B-spline value does not change when the knots and the ar-
gument u are all translated by the same amount. Show that a B-spline value
does not change when the knots and the argument are all scaled by the same
amount. That is, B-spline are invariant under linear reparameterization.

X10– We abbreviate t := t(j:j+d+1) and denote by Πd,t the set of all piecewise
polynomial functions of degree d with breaks at the knots in t. Show that
B(u|t) ∈ Πd,t.

Splines defined

A spline s of degree d is a linear combination of B-splines:

s(u|t(i:i+d+n+1)) :=

i+n∑
j=i

cj:j+d+1B(u|t(j:j+d+1)), cj:k ∈ R. (2)
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We note that there are n+d+1 knots for n coefficients. We sometimes abbreviate
cj := cj:j+d+1 and Bj := B(u|t(j:j+d+1)) when the degree d is understood.

We will see that we can evaluate the spline on the interval [ti+d, ti+n+1].
That is, we will need d additional knots on each side of the interval.
A knot sequence

tZ := {. . . ,−2,−1, 0, 1, 2, . . .}

gives rise to the uniform splines (also called Cardinal Splines):

B(u|i : i+ d+ 1)) = B(u− i|0 : d+ 1)).

The recursion for uniform splines simplifies to

B(u|0 : d+ 1) = uB(u|0 : d) + (d+ 1− u)B(u|1 : d+ 1).

The knot sequence

tB := {. . . , 0, 0, 0, 1, 1, 1, . . .}

with µ+ 1 zeros and ν + 1 ones yields polynomials in Bernstein-Bezier form

Bµ,ν(u) :=

(
µ+ ν

µ

)
(1− u)µuν = uBµ,ν−1(u) + (1− u)Bµ−1,ν(u).

Spline Evaluation

We can be more efficient than evaluating each B-spline separately and forming
linear combinations. The algorithm for obtaining the value directly from the
coefficients and the knots is called de Boor algorithm. In the special case t = tB
the de Boor algorithm is also called de Casteljau’s algorithm.

The key to evaluating a spline by recursion is to express coefficients at level
d+ 1 as a linear polynomial in u of two coefficients at level d:

ci:i+d := (1− `(u|i,i+d)) ci−1:i+d + `(u|i,i+d) ci:i+d+1 (3)

=∗
ti+d − u
ti+d − ti

ci−1:i+d +
u− ti
ti+d − ti

ci:i+d+1.

Here =∗ indicates the case that ti+d 6= ti. While, formally, all ci:j are functions
of u, in the following context u will be the parameter of evaluation, and therefore
a fixed number so that the expressions in (3) will be constants.

To evaluate the spline s(u|t(i:i+d+n+1)) at a value

u ∈ [tj , tj+1) ⊂ [ti+d, ti+n+1),

we compute cj:j+1 by repeatedly applying Equation (3) (cf. ). It is convenient
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Figure 1: The indices of splines obtained by recursion upwards, i.e. (a : b) for
indices a and b corresponds to B(u|t(a:b)) and ca:b. For the reverse recursion

for evaluation, the weights for forming (a : b) are 1 − `(u|a:b) = tb−u
tb−ta and

`(u|a:b) = u−ta
tb−ta respectively.

to look at a window of relevant knots tj−d:j+d+1.

f(u|t(j−d:j+d+1)) =

j+d∑
i=j

ci−d:i+1B(u|t(i−d:i+1))

=

j+d−1∑
i=j

ci−d+1:i+1B(u|t(i−d+1:i+1)) = . . . =

j∑
i=j

ci:i+1B(u|t(i:i+1))

= cj:j+1

The last equality follows since splines with two knots are piecewise constant and
for u ∈ [tj , tj+1)), B(u|t(i:i+1)) = 0 except that it is 1 when i = j.

Example:We evaluate at u = 0 ∈ [tj , tj+1, a spline defined by d = 2 and

t =
[
−3 −2 −1 1 5 6

]
, c =

[
48 12 24

]
.

Therefore tj = −1 and cj−2:j+1 = 48. We compute

`(u|j−1:j+1) =
u− tj−1

tj+1 − tj−1
=

0− (−2)

1− (−2)
=

2

3

`(u|j:j+2) =
u− tj
tj+2 − tj

=
0− (−1)

5− (−1)
=

1

6

`(u|j:j+1) =
u− tj
tj+1 − tj

=
0− (−1)

1− (−1)
=

1

2
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The schema then reads

cj−2:j+1 : 48 12 24
`(u|j:j+2) : 2/3 1/6
cj−1:j+1 : 24 14
`(u|j:j+1) : 1/2
cj:j+1 : 19

In the example, we need 6 knots and 3 coefficients to have one interval, [−1..1].
The define the three degree 2 B-splines that have support (are non-zero) on the
interval.

X5– Using the data of the example, associate each coefficient cj with its Greville
abscissa defined by

t∗j :=
1

d

d∑
i=1

tj+i

and draw the control polygon and the de Boor evaluation.
X3– Show that for tj ≤ u ≤ tj+1 all 0 ≤ `(u|i:j) ≤ 1.
X3– Check that the algorithm is well-defined for multiple knots.

Differentiation

The spline s(u|t(i:i+d+n+1)) :=
∑i+n
j=i cj:j+d+1B(u|t(j:j+d+1)) of degree d has the

derivative

s′(u|t(i:i+d+n+1)) :=

i+n∑
j=i+1

c′j:j+dB(u|t(j:j+d)), (4)

where

c′j:j+d := d
cj:j+d+1 − cj−1:j+d

tj+d − tj

Multiplication

X20– What challenges do you see in deriving the coefficients and knots of the
spline that is the product of two given splines? (Conversion to BB-form and
back helps, but here the structure is asked)

Integration

The spline s(u|t(i:i+d+n−1)) :=
∑i+n
j=i cj:j+dB(u|t(j:j+d)), has the antiderivative

i+n∑
j=i

c∗j:j+d+1B(u|t(j:j+d+1)), c∗j:j+d+1 := const +

{∑j
i=j0

ci:i+d
ti+d−ti

d∑j0−1
i=j ci:i+d

ti+d−ti
d

(5)
where j0 and the constant are arbitrary (j0 separates two subsets of indices).
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Continuity

The knots tj and tj+1 may agree. Such coalescing of knots decreases the other-
wise guaranteed continuity of the B-spline and hence of the spline sd,t as follows.
If m is the multiplicity of the knot tj , i.e. . . . < tj = . . . = tj+m−1 < . . . then
sd,t is at least

k = d - m

times continuously differentiable at tj .

Reproduction

Marsden’s identity

(u− τ)d =

d∑
j=0

aj:j+d(τ)B(u|t), t := t(j:j+d+1),

aj:j+d(τ) := (tj+1 − τ) · · · (tj+d − τ)

shows what coefficients ct the spline
∑
j ctB(u|t) has to have so that so that

the spline reproduces a given polynomial p :=
∑k
j=0(u− τ)j .

Differentiating i times with respect to τ and dividing by d! yields

(u− τ)d−j

(d− j)!
=

(−1)j

d!

∑
i

B(u|t(i:I+d+1))D
jai:i+d(τ).

Taylor expansion gives the coefficients,

ci =λ(d, i)p :=

d∑
j=0

(−1)j(Djai:i+d)(τ)

d!
(Dd−jp)(τ).

The λ(d, i) are called dual functionals.
X5– Show that for fixed degree d and any knot sequence (ti)i=−∞..∞∑

j

B(u|t(j:j+d+1)) = 1. (6)

X5– Show for any linear function p and Greville abscissae t∗i∑
j

B(u|t(j:j+d+1))p(t
∗
j ) = p. (7)

X10– Show that for τ ∈ [xj , xj+d+1)

λ(d, i)(
∑
j

B(u|t(j:j+d+1))cj) = ci. (8)

Of course splines are not usually used to reproduce polynomials but to approx-
imate (or even interpolate) a sequence of points.
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Interpolation

(c.f. cubic spline interpolation)
The Schoenberg-Whittney interpolation theorem: given a vector of interpo-

lation points uj and values f(uj), there always exists a spline of degree d that
is d− 1 times continuously differentiable and interpolates the data.
A necessary and sufficient condition for the banded system of interpolation con-
straints to be solvable is tj < uj < tj+d+1.

Stability and local well-conditioning of a spline basis

Small spline function implies small spline coefficients (cj 6= 0 for some j):

2−d max
i
‖ci‖ < ‖

∑
cjBj‖.

‖
∑
cjBj‖∞ ≤ maxi ‖ci‖ follows from

∑
Bj = 1.

Knot insertion and subdivision.

Let Cc,t be the control polygon of the spline s. Then

sup
u
|s(u|t)− Cc,t(u)|

≤ const sup
u
|D2s(u)|| sup

j
(tj+1 − tj)|2.

That is, the control polygon converges with quadratic error to s as the distance
between the knots decreases. Inserting a knot requires generating new coeffi-
cients without changing the spline. The correct way to do this when the knot
t̂ is inserted into the sequence t is to choose the new coefficient sequence as
follows.

ĉj :=


cj , tj+d ≤ t̂;
(1− `d,j(t̂))cj−1 + `d,j(t̂)cj , tj < t̂ < tj+d;

cj−1, t̂ ≤ tj
Example: Given the spline defined by

t =
[
−3 −2 −1 1 5 6

]
,

c =
[
48 12 24

]
.

insert a new knot t̂ = 0. We compute

c 48 12 24
w2 : 2/3 1/6
ĉ : 48 24 14 24

The Greville abscissae are

t∗ = −1.5, 0, 3, before insertion and

t∗ = −1.5,−.5, .5, 3, after insertion.
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X10– Given the spline curve defined by

t = [0, 0, 0, 0, 1, 3, 5, 5, 5, 5],

c =

[
−1 0 1 2 3 4
0 0 1 1 0 1

]
compute the new control polygon after insertion of the new knot t̂ := 2. (Hints:
there are knots x0, ..., x9 and 6 intervals, hence 9 = 6 + d. For a curve we do
not display the Greville abscissae but only the (x, y) pairs.)
X10– Given the spline function of degree 3 with coefficients c and t = t2Z =
. . . ,−2, 0, 2, . . . give the coefficient sequence after insertion of knots at every odd
integer; that is after changing the knot sequence to tZ .

The convex hull property

X3– Show that for tj ≤ u < tj+1, s(u) is a convex combination of cj−d, . . . , cj .

Variation diminuition

The number of strong sign changes in any increasing sequence of values pd(x1), . . . , pd(xr)
of the spline is less than the number of strong sign changes in the sequence of
coefficients ci. This is often written as

S−(s) ≤ S−(c),

or S−(s(t1), . . . , s(tn)) ≤ S−(c1, . . . , cn) for t strictly increasing. Proof: insert
ti into the knot sequence to obtain new coefificnets by convex averaging.

Shape preservation

A spline crosses any straight line no more often than its control polygon. Proof:
S(s− `) ≤ S(c− `).
X3– Show that shape preservation implies that a spline is monotone if its control
polygon is monotone. X3– Show that shape preservation implies that a spline
is convex if its control polygon is convex.

Alternative definitions of B-splines

(that allow the definition of splines in several dimensions)
1. Hermite-Genocchi formula: B-spline as distribution.∫

R

Bd(x, u)φ(u)du

= d!

∫
∆(d)

φ(λx)dλ
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where ∆(d) is the d-simplex spanned by
e0, e1, . . . , ed, e0 = 0, ei the ith unit vector.

2. Geometric interpretation. With T a d-simplex such that the first com-
ponent of each vertex is one of the knots xj and π the projection Rd 7→ R :
π(x1, x2, . . . , xd) = x1. Then

Bd(x, u) := vold−1(T ∩ (π−1(u)))/vold(T ).


