B-splines and splines

A rough (and not fully precise) characterization of a spline is a piecewise polynomial that is as smooth as possible without becoming a single polynomial.

In the following, we define a basis for splines, the collection of B-basis functions, short B-splines. B-splines express a spline in B-form, i.e. as a linear combination of B-splines.

The B-form is particularly well-suited for applications such as graphics and geopmetric modelling, as well as numerical computations. Compared with other representations, B-splines have the advantage built-in continuity between the polynomial pieces - a property that is retained by linear combinations. Further desirable properties become clear as we develop the subject.
(The letter B stands for 'basic' and is denoted by capital letters, for historical reasons even though it is scalar-valued.)

B-spline definition by recursion

Let

$$
\begin{equation*}
t_{(i: j)}:=t_{i}, t_{i+1}, \ldots, t_{j} \tag{1}
\end{equation*}
$$

be a nondecreasing sequence of scalars, i.e. $t_{k+1} \geq t_{k}$. The scalars are called $k n o t s$. Then the B-spline of degree d is defined recursively as follows.

$$
\begin{aligned}
& B\left(u \mid t_{(i: i+1)}\right):= \begin{cases}1 & \text { if } t_{i} \leq u<t_{i+1} \\
0 & \text { otherwise },\end{cases} \\
& B\left(u \mid t_{(i: i+d+1)}\right):=\ell\left(\left.u\right|_{i, i+d}\right) B\left(u \mid t_{(i: i+d)}\right) \\
&+\left(1-\ell\left(\left.u\right|_{i+1, i+d+1}\right)\right) B\left(u \mid t_{(i+1: i+d+1)}\right) \\
& \text { where } \ell\left(\left.u\right|_{i, j}\right):= \begin{cases}\frac{u-t_{i}}{t_{j}-t_{i}} & \text { if } t_{i} \neq t_{j} \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

$X_{5}-$ Verify that for $t_{j+d+1}>t_{j}, B\left(u \mid t_{(j: j+d+1)}\right)>0$ on the interval $\left(t_{j}, t_{j+d+1}\right)$.
X_{5} - Show that a B-spline value does not change when the knots and the argument u are all translated by the same amount. Show that a B-spline value does not change when the knots and the argument are all scaled by the same amount. That is, B-spline are invariant under linear reparameterization.
$X_{10^{-}}$We abbreviate $\mathbf{t}:=t_{(j: j+d+1)}$ and denote by $\Pi_{d, \mathbf{t}}$ the set of all piecewise polynomial functions of degree d with breaks at the knots in \mathbf{t}. Show that $B(u \mid \mathbf{t}) \in \Pi_{d, \mathbf{t}}$.

Splines defined

A spline s of degree d is a linear combination of B-splines:

$$
\begin{equation*}
s\left(u \mid t_{(i: i+d+n+1)}\right):=\sum_{j=i}^{i+n} c_{j: j+d+1} B\left(u \mid t_{(j: j+d+1)}\right), \quad c_{j: k} \in R . \tag{2}
\end{equation*}
$$

We note that there are $n+d+1$ knots for n coefficients. We sometimes abbreviate $c_{j}:=c_{j: j+d+1}$ and $B_{j}:=B\left(u \mid t_{(j: j+d+1)}\right)$ when the degree d is understood.

We will see that we can evaluate the spline on the interval $\left[t_{i+d}, t_{i+n+1}\right]$. That is, we will need d additional knots on each side of the interval. A knot sequence

$$
\mathbf{t}_{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

gives rise to the uniform splines (also called Cardinal Splines):

$$
B(u \mid i: i+d+1))=B(u-i \mid 0: d+1)) .
$$

The recursion for uniform splines simplifies to

$$
B(u \mid 0: d+1)=u B(u \mid 0: d)+(d+1-u) B(u \mid 1: d+1)
$$

The knot sequence

$$
\mathbf{t}_{B}:=\{\ldots, 0,0,0,1,1,1, \ldots\}
$$

with $\mu+1$ zeros and $\nu+1$ ones yields polynomials in Bernstein-Bezier form

$$
B_{\mu, \nu}(u):=\binom{\mu+\nu}{\mu}(1-u)^{\mu} u^{\nu}=u B_{\mu, \nu-1}(u)+(1-u) B_{\mu-1, \nu}(u)
$$

Spline Evaluation

We can be more efficient than evaluating each B-spline separately and forming linear combinations. The algorithm for obtaining the value directly from the coefficients and the knots is called de Boor algorithm. In the special case $t=t_{B}$ the de Boor algorithm is also called de Casteljau's algorithm.

The key to evaluating a spline by recursion is to express coefficients at level $d+1$ as a linear polynomial in u of two coefficients at level d :

$$
\begin{align*}
c_{i: i+d} & :=\left(1-\ell\left(\left.u\right|_{i, i+d}\right)\right) c_{i-1: i+d}+\ell\left(\left.u\right|_{i, i+d}\right) c_{i: i+d+1} \tag{3}\\
& ={ }^{*} \frac{t_{i+d}-u}{t_{i+d}-t_{i}} c_{i-1: i+d}+\frac{u-t_{i}}{t_{i+d}-t_{i}} c_{i: i+d+1} .
\end{align*}
$$

Here $={ }^{*}$ indicates the case that $t_{i+d} \neq t_{i}$. While, formally, all $c_{i: j}$ are functions of u, in the following context u will be the parameter of evaluation, and therefore a fixed number so that the expressions in (3) will be constants.

To evaluate the spline $s\left(u \mid t_{(i: i+d+n+1)}\right)$ at a value

$$
u \in\left[t_{j}, t_{j+1}\right) \subset\left[t_{i+d}, t_{i+n+1}\right)
$$

we compute $c_{j: j+1}$ by repeatedly applying Equation (3) (cf.). It is convenient

Figure 1: The indices of splines obtained by recursion upwards, i.e. ($a: b$) for indices a and b corresponds to $B\left(u \mid t_{(a: b)}\right)$ and $c_{a: b}$. For the reverse recursion for evaluation, the weights for forming $(a: b)$ are $1-\ell\left(\left.u\right|_{a: b}\right)=\frac{t_{b}-u}{t_{b}-t_{a}}$ and $\ell\left(\left.u\right|_{a: b}\right)=\frac{u-t_{a}}{t_{b}-t_{a}}$ respectively.
to look at a window of relevant knots $t_{j-d: j+d+1}$.

$$
\begin{aligned}
f\left(u \mid t_{(j-d: j+d+1)}\right) & =\sum_{i=j}^{j+d} c_{i-d: i+1} B\left(u \mid t_{(i-d: i+1)}\right) \\
& =\sum_{i=j}^{j+d-1} c_{i-d+1: i+1} B\left(u \mid t_{(i-d+1: i+1)}\right)=\ldots=\sum_{i=j}^{j} c_{i: i+1} B\left(u \mid t_{(i: i+1)}\right) \\
& =c_{j: j+1}
\end{aligned}
$$

The last equality follows since splines with two knots are piecewise constant and for $\left.u \in\left[t_{j}, t_{j+1}\right)\right), B\left(u \mid t_{(i: i+1)}\right)=0$ except that it is 1 when $i=j$.

Example:We evaluate at $u=0 \in\left[t_{j}, t_{j+1}\right.$, a spline defined by $d=2$ and

$$
\mathbf{t}=\left[\begin{array}{llllll}
-3 & -2 & -1 & 1 & 5 & 6
\end{array}\right], \quad c=\left[\begin{array}{lll}
48 & 12 & 24
\end{array}\right] .
$$

Therefore $t_{j}=-1$ and $c_{j-2: j+1}=48$. We compute

$$
\begin{aligned}
\ell\left(\left.u\right|_{j-1: j+1}\right) & =\frac{u-t_{j-1}}{t_{j+1}-t_{j-1}}=\frac{0-(-2)}{1-(-2)}=\frac{2}{3} \\
\ell\left(\left.u\right|_{j: j+2}\right) & =\frac{u-t_{j}}{t_{j+2}-t_{j}}=\frac{0-(-1)}{5-(-1)}=\frac{1}{6} \\
\ell\left(\left.u\right|_{j: j+1}\right) & =\frac{u-t_{j}}{t_{j+1}-t_{j}}=\frac{0-(-1)}{1-(-1)}=\frac{1}{2}
\end{aligned}
$$

The schema then reads

$c_{j-2: j+1}:$	48		12		24
$\ell\left(\left.u\right\|_{j: j+2}\right):$		$2 / 3$		$1 / 6$	
$c_{j-1: j+1}:$		24		14	
$\ell\left(\left.u\right\|_{j: j+1}\right):$			$1 / 2$		
$c_{j: j+1}:$			19		

In the example, we need 6 knots and 3 coefficients to have one interval, [$-1 . .1$]. The define the three degree 2 B -splines that have support (are non-zero) on the interval.
X_{5} - Using the data of the example, associate each coefficient c_{j} with its Greville abscissa defined by

$$
t_{j}^{*}:=\frac{1}{d} \sum_{i=1}^{d} t_{j+i}
$$

and draw the control polygon and the de Boor evaluation.
$X_{3}-$ Show that for $t_{j} \leq u \leq t_{j+1}$ all $0 \leq \ell\left(\left.u\right|_{i: j}\right) \leq 1$.
$X_{3}-$ Check that the algorithm is well-defined for multiple knots.

Differentiation

The spline $s\left(u \mid t_{(i: i+d+n+1)}\right):=\sum_{j=i}^{i+n} c_{j: j+d+1} B\left(u \mid t_{(j: j+d+1)}\right)$ of degree d has the derivative

$$
\begin{equation*}
s^{\prime}\left(u \mid t_{(i: i+d+n+1)}\right):=\sum_{j=i+1}^{i+n} c_{j: j+d}^{\prime} B\left(u \mid t_{(j: j+d)}\right), \tag{4}
\end{equation*}
$$

where

$$
c_{j: j+d}^{\prime}:=d \frac{c_{j: j+d+1}-c_{j-1: j+d}}{t_{j+d}-t_{j}}
$$

Multiplication

$X_{20^{-}}$What challenges do you see in deriving the coefficients and knots of the spline that is the product of two given splines? (Conversion to BB-form and back helps, but here the structure is asked)

Integration

The spline $s\left(u \mid t_{(i: i+d+n-1)}\right):=\sum_{j=i}^{i+n} c_{j: j+d} B\left(u \mid t_{(j: j+d)}\right)$, has the antiderivative

$$
\sum_{j=i}^{i+n} c_{j: j+d+1}^{*} B\left(u \mid t_{(j: j+d+1)}\right), \quad c_{j: j+d+1}^{*}:=\mathrm{const}+\left\{\begin{array}{l}
\sum_{i=j_{0}}^{j} c_{i: i+d} \frac{t_{i+d}-t_{i}}{d} \tag{5}\\
\sum_{i=j}^{j_{0}-1} c_{i: i+d} \frac{t_{i+d}-t_{i}}{d}
\end{array}\right.
$$

where j_{0} and the constant are arbitrary (j_{0} separates two subsets of indices).

Continuity

The knots t_{j} and t_{j+1} may agree. Such coalescing of knots decreases the otherwise guaranteed continuity of the B-spline and hence of the spline $s_{d, \mathbf{t}}$ as follows. If m is the multiplicity of the knot t_{j}, i.e. $\ldots<t_{j}=\ldots=t_{j+m-1}<\ldots$ then $s_{d, \mathbf{t}}$ is at least

$$
k=d-m
$$

times continuously differentiable at t_{j}.

Reproduction

Marsden's identity

$$
\begin{gathered}
(u-\tau)^{d}=\sum_{j=0}^{d} a_{j: j+d}(\tau) B(u \mid \mathbf{t}), \quad \mathbf{t}:=t_{(j: j+d+1)}, \\
a_{j: j+d}(\tau):=\left(t_{j+1}-\tau\right) \cdots\left(t_{j+d}-\tau\right)
\end{gathered}
$$

shows what coefficients $c_{\mathbf{t}}$ the spline $\sum_{j} c_{\mathbf{t}} B(u \mid \mathbf{t})$ has to have so that so that the spline reproduces a given polynomial $p:=\sum_{j=0}^{k}(u-\tau)^{j}$.

Differentiating i times with respect to τ and dividing by d ! yields

$$
\frac{(u-\tau)^{d-j}}{(d-j)!}=\frac{(-1)^{j}}{d!} \sum_{i} B\left(u \mid t_{(i: I+d+1)}\right) D^{j} a_{i: i+d}(\tau) .
$$

Taylor expansion gives the coefficients,

$$
c_{i}=\lambda(d, i) p:=\sum_{j=0}^{d} \frac{(-1)^{j}\left(D^{j} a_{i: i+d}\right)(\tau)}{d!}\left(D^{d-j} p\right)(\tau) .
$$

The $\lambda(d, i)$ are called dual functionals.
$X_{5^{-}}$Show that for fixed degree d and any knot sequence $\left(t_{i}\right)_{i=-\infty . . \infty}$

$$
\begin{equation*}
\sum_{j} B\left(u \mid t_{(j: j+d+1)}\right)=1 . \tag{6}
\end{equation*}
$$

$X_{5}-$ Show for any linear function p and Greville abscissae t_{i}^{*}

$$
\begin{equation*}
\sum_{j} B\left(u \mid t_{(j: j+d+1)}\right) p\left(t_{j}^{*}\right)=p . \tag{7}
\end{equation*}
$$

$X_{10^{-}}$Show that for $\tau \in\left[x_{j}, x_{j+d+1}\right)$

$$
\begin{equation*}
\lambda(d, i)\left(\sum_{j} B\left(u \mid t_{(j: j+d+1)}\right) c_{j}\right)=c_{i} . \tag{8}
\end{equation*}
$$

Of course splines are not usually used to reproduce polynomials but to approximate (or even interpolate) a sequence of points.

Interpolation

(c.f. cubic spline interpolation)

The Schoenberg-Whittney interpolation theorem: given a vector of interpolation points u_{j} and values $f\left(u_{j}\right)$, there always exists a spline of degree d that is $d-1$ times continuously differentiable and interpolates the data.
A necessary and sufficient condition for the banded system of interpolation constraints to be solvable is $t_{j}<u_{j}<t_{j+d+1}$.

Stability and local well-conditioning of a spline basis

Small spline function implies small spline coefficients $\left(c_{j} \neq 0\right.$ for some $\left.j\right)$:

$$
2^{-d} \max _{i}\left\|c_{i}\right\|<\left\|\sum c_{j} B_{j}\right\| .
$$

$\left\|\sum c_{j} B_{j}\right\|_{\infty} \leq \max _{i}\left\|c_{i}\right\|$ follows from $\sum B_{j}=1$.

Knot insertion and subdivision.

Let $C_{c, t}$ be the control polygon of the spline s. Then

$$
\begin{aligned}
& \sup _{u}\left|s(u \mid t)-C_{c, t}(u)\right| \\
& \quad \leq \text { const } \sup _{u}\left|D^{2} s(u)\right|\left|\sup _{j}\left(t_{j+1}-t_{j}\right)\right|^{2} .
\end{aligned}
$$

That is, the control polygon converges with quadratic error to s as the distance between the knots decreases. Inserting a knot requires generating new coefficients without changing the spline. The correct way to do this when the knot \hat{t} is inserted into the sequence t is to choose the new coefficient sequence as follows.

$$
\hat{c}_{j}:= \begin{cases}c_{j}, & t_{j+d} \leq \hat{t} \\ \left(1-\ell_{d, j}(\hat{t})\right) c_{j-1}+\ell_{d, j}(\hat{t}) c_{j}, & t_{j}<\hat{t}<t_{j+d} \\ c_{j-1}, & \hat{t} \leq t_{j}\end{cases}
$$

Example: Given the spline defined by

$$
\begin{aligned}
t & =\left[\begin{array}{llllll}
-3 & -2 & -1 & 1 & 5 & 6
\end{array}\right], \\
c & =\left[\begin{array}{lll}
48 & 12 & 24
\end{array}\right] .
\end{aligned}
$$

insert a new knot $\hat{t}=0$. We compute

c	48		12		24
$w_{2}:$		$2 / 3$		$1 / 6$	
$\hat{c}:$	48	24	14		24

The Greville abscissae are

$$
\begin{aligned}
& t^{*}=-1.5,0,3, \quad \text { before insertion and } \\
& t^{*}=-1.5,-.5, .5,3, \quad \text { after insertion. }
\end{aligned}
$$

X_{10} - Given the spline curve defined by

$$
\begin{aligned}
& t=[0,0,0,0,1,3,5,5,5,5], \\
& c=\left[\begin{array}{cccccc}
-1 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

compute the new control polygon after insertion of the new knot $\hat{t}:=2$. (Hints: there are knots x_{0}, \ldots, x_{9} and 6 intervals, hence $9=6+d$. For a curve we do not display the Greville abscissae but only the (x, y) pairs.)
$X_{10^{-}}$Given the spline function of degree 3 with coefficients c and $t=t_{2 Z}=$ $\ldots,-2,0,2, \ldots$ give the coefficient sequence after insertion of knots at every odd integer; that is after changing the knot sequence to t_{Z}.

The convex hull property

$X_{3}-$ Show that for $t_{j} \leq u<t_{j+1}, s(u)$ is a convex combination of c_{j-d}, \ldots, c_{j}.

Variation diminuition

The number of strong sign changes in any increasing sequence of values $p_{d}\left(x_{1}\right), \ldots, p_{d}\left(x_{r}\right)$ of the spline is less than the number of strong sign changes in the sequence of coefficients c_{i}. This is often written as

$$
S^{-}(s) \leq S^{-}(c)
$$

or $S^{-}\left(s\left(t_{1}\right), \ldots, s\left(t_{n}\right)\right) \leq S^{-}\left(c_{1}, \ldots, c_{n}\right)$ for t strictly increasing. Proof: insert t_{i} into the knot sequence to obtain new coefificnets by convex averaging.

Shape preservation

A spline crosses any straight line no more often than its control polygon. Proof: $S(s-\ell) \leq S(c-\ell)$.
$X_{3}-$ Show that shape preservation implies that a spline is monotone if its control polygon is monotone. X_{3} - Show that shape preservation implies that a spline is convex if its control polygon is convex.

Alternative definitions of B-splines

(that allow the definition of splines in several dimensions)

1. Hermite-Genocchi formula: B-spline as distribution.

$$
\begin{aligned}
& \int_{R} B_{d}(x, u) \phi(u) d u \\
& \quad=d!\int_{\Delta(d)} \phi(\lambda x) d \lambda
\end{aligned}
$$

where $\Delta(d)$ is the d-simplex spanned by $e_{0}, e_{1}, \ldots, e_{d}, e_{0}=0, e_{i}$ the i th unit vector.
2. Geometric interpretation. With T a d-simplex such that the first component of each vertex is one of the knots x_{j} and π the projection $\mathbb{R}^{d} \mapsto \mathbb{R}$: $\pi\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1}$. Then

$$
B_{d}(x, u):=\operatorname{vol}_{d-1}\left(T \cap\left(\pi^{-1}(u)\right)\right) / \operatorname{vol}_{d}(T)
$$

