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B-splines and splines

A rough (and not fully precise) characterization of a spline is a piecewise poly-
nomial that is as smooth as possible without becoming a single polynomial.

In the following, we define a basis for splines, the collection of B-basis func-
tions, short B-splines. B-splines express a spline in B-form, i.e. as a linear
combination of B-splines.

The B-form is particularly well-suited for applications such as graphics and
geopmetric modelling, as well as numerical computations. Compared with other
representations, B-splines have the advantage built-in continuity between the
polynomial pieces — a property that is retained by linear combinations. Further
desirable properties become clear as we develop the subject.

(The letter B stands for ‘basic’ and is denoted by capital letters, for historical
reasons even though it is scalar-valued.)

B-spline definition by recursion

Let

L) == tistig1, - -5 t5 (1)
be a nondecreasing sequence of scalars, i.e. {41 > tx. The scalars are called
knots. Then the B-spline of degree d is defined recursively as follows.

1 ifti§u<ti+1

0 otherwise,

B(ult(.iy1)) == {

B(ult(sitar)) = (uliiva) B(ult(i:ivay)
+ (1 = (uliy1,ivar1))Bultipiiivarn))

7tl .
{tuj—ti lf tl' 7é tj

i) =

where £(u
0 otherwise.

X5~ Verify that for t;,q41 > t;, B(ult(j.j1+at1)) > 0 on the interval (t;,¢;1a41).

X5— Show that a B-spline value does not change when the knots and the ar-
gument u are all translated by the same amount. Show that a B-spline value
does not change when the knots and the argument are all scaled by the same
amount. That is, B-spline are invariant under linear reparameterization.

X10— We abbreviate t := #(;.;1441) and denote by Il the set of all piecewise
polynomial functions of degree d with breaks at the knots in t. Show that
B(u|t) S Hd,to

Splines defined

A spline s of degree d is a linear combination of B-splines:
i+n
(Ut (iigatnsn) = Y Cjrar1 Bltrarn), ¢k € R, (2)
j=i
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We note that there are n+d+1 knots for n coeflicients. We sometimes abbreviate
¢j = Cjjyar1 and Bj := B(ult(j.j+4+1)) when the degree d is understood.

We will see that we can evaluate the spline on the interval [t;4q,titn11].
That is, we will need d additional knots on each side of the interval.
A knot sequence

tz ={..,-2,-1,01,2,...}
gives rise to the uniform splines (also called Cardinal Splines):
B(uli:i+d+1))=B(u—1i|0:d+1)).
The recursion for uniform splines simplifies to
B(ul0:d+1) =uB(ul0:d) + (d+1—u)B(ull : d + 1).
The knot sequence
tg:=4{...,0,0,0,1,1,1,...}

with 4+ 1 zeros and v + 1 ones yields polynomials in Bernstein-Bezier form

B, (u) = (“ : ”) (1 — w)"u” = uB,_1(u) + (1 — w)By_1.,(u).

Spline Evaluation

We can be more efficient than evaluating each B-spline separately and forming
linear combinations. The algorithm for obtaining the value directly from the
coefficients and the knots is called de Boor algorithm. In the special case t = tp
the de Boor algorithm is also called de Casteljau’s algorithm.

The key to evaluating a spline by recursion is to express coefficients at level
d+ 1 as a linear polynomial in u of two coefficients at level d:

Ciritd = (1 — l(u|iita)) Cimr:ita + (Ui itd) Ciitds1 (3)
« tier — U u — ti
= —————Ci_1:+d T T Ciy .
ti+d — tz 1—1:94+d ti+d — tz 1:i4+d+1

*

Here =" indicates the case that ¢;14 7 t;. While, formally, all ¢;.; are functions
of u, in the following context u will be the parameter of evaluation, and therefore
a fixed number so that the expressions in (3) will be constants.

To evaluate the spline s(ult(;.i+d4+n+1)) at a value

u € [tj7tj+1) C [ti+d;ti+n+1)7

we compute ¢;.j11 by repeatedly applying Equation (3) (cf. ). It is convenient
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Figure 1: The indices of splines obtained by recursion upwards, i.e. (a : b) for
indices a and b corresponds to B(ult(,s)) and c.p. For the reverse recursion

for evaluation, the weights for forming (a : b) are 1 — £(u|qp) = tt::ti and

€(ula:p) = {=5 respectively.

to look at a window of relevant knots ¢;_q.j4+d+1-

j+d
f(“|t(jfd:j+d+1)) = Z Ci—d:i+1B(U|t(i7d:i+1))

=]
j+d—1 j
= Y cicarin Bltioarrizn) = = > Ciir1 Bultgis))

i=j P
= G+l
The last equality follows since splines with two knots are piecewise constant and
for u € [tj,t;11)), B(ult(i:i41)) = 0 except that it is 1 when i = j.
Example:We evaluate at u = 0 € [tj,t;41, a spline defined by d = 2 and
t=[-3 -2 -1 1 5 6], c=[48 12 24].

Therefore t; = —1 and c;_2.j4+1 = 48. We compute

u—1t;_1 0—(-2) 2
f WUls_1.4 = J = = -
(ulj-1:+1) i1 —tj1 1—(-2) 3

u—t; 0—(-1) 1

g = J = = —

(u|]'J+2) tj_;,_z — tj 5— (—1) 6

u—t; 0—(-1) 1

W) = —— =77~ 3

j+1 J ( )
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The schema then reads

Cj—2:541 * 48 12 24
Ouljjve) : 2/3 1/6
Cj—1:541 - 24 14
(uljijt) : 1/2

Cjij+1 - 19

In the example, we need 6 knots and 3 coefficients to have one interval, [—1..1].
The define the three degree 2 B-splines that have support (are non-zero) on the
interval.

Xs5— Using the data of the example, associate each coeflicient c; with its Greville

abscissa defined by
d
N 1
ti=75 >ty
i=1

and draw the control polygon and the de Boor evaluation.
X3~ Show that for ¢; < wu <tj4 all 0 < £(ul;;) < 1.
X3— Check that the algorithm is well-defined for multiple knots.

Differentiation

The spline s(ult(;itatnt1)) = Z;Zl Cjijrdr1B(ult(jj4a41)) of degree d has the
derivative

+n
$' (ultivarnsn) = Y SyraBultgra), (4)
j=it1
where
/ Cj:j+d+1 — Cj—1:j+d

Ciivo:=d

st tjtd =t
Multiplication

X50— What challenges do you see in deriving the coefficients and knots of the
spline that is the product of two given splines? (Conversion to BB-form and
back helps, but here the structure is asked)

Integration

The spline s(ult(;.itdyn—1)) = Z;j; cjij+aB(ult(j.j+q)), has the antiderivative

i+n J tita—ti
* B * L Zi:jo Civitd™ g
E ojrar1Bultgijrasn), Cjjtd41 = const + Jo=1 | tiya—ts
J=i i=j Ciitd™ g
(5)

where jo and the constant are arbitrary (jo separates two subsets of indices).
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Continuity

The knots ¢; and ¢;4; may agree. Such coalescing of knots decreases the other-
wise guaranteed continuity of the B-spline and hence of the spline s4 + as follows.
If m is the multiplicity of the knot ¢;, ie. ... <t; = ... = tj4m—1 < ... then
54, is at least

k=d-m

times continuously differentiable at ¢;.

Reproduction

Marsden’s identity

'LL — ’7' Z Q. ]+d U|t) t .= t(j:j+d+1)a

aj:j+d(7) = (tjs1— 7)) (tjra — 7)
shows what coefficients c; the spline >, ¢t B(u[t) has to have so that so that
the spline reproduces a given polynomial p := Z?ZO(U — 7).
Differentiating ¢ times with respect to 7 and dividing by d! yields

u— 1) —1)J _
((d—;)! -4 dl!) ZB(“‘t(iﬂdﬂ))Djai:i+d(7)-

Taylor expansion gives the coefficients,

d
I !

7=0
The A(d,4) are called dual functionals.
X5— Show that for fixed degree d and any knot sequence (¢;)i=—oo..c0
Z B(ult(j.jtat1)) = 1. (6)
J
Xs— Show for any linear function p and Greville abscissae ¢
> Blult(jj+arn)p(t]) = p. (7)
J
Xq0— Show that for 7 € [z, %1a+1)
Md, )Y~ Blult(jjrarn)e;) = e (8)
J
Of course splines are not usually used to reproduce polynomials but to approx-
imate (or even interpolate) a sequence of points.
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Interpolation

(c.f. cubic spline interpolation)

The Schoenberg- Whittney interpolation theorem: given a vector of interpo-
lation points u; and values f(u;), there always exists a spline of degree d that
is d — 1 times continuously differentiable and interpolates the data.

A necessary and sufficient condition for the banded system of interpolation con-
straints to be solvable is t; < u; < tj4q441.

Stability and local well-conditioning of a spline basis

Small spline function implies small spline coefficients (c; # 0 for some j):

—d
2 tmae i < |3 ;B

|3 ¢jBjlloo < max; ||c;|| follows from > B; = 1.

Knot insertion and subdivision.

Let C.; be the control polygon of the spline s. Then

sup|s(ult) — Ce ()]

< constsup |[D?s(u)||sup(tj+1 —t;)[*
u j

That is, the control polygon converges with quadratic error to s as the distance
between the knots decreases. Inserting a knot requires generating new coefli-
cients without changing the spline. The correct way to do this when the knot
t is inserted into the sequence t is to choose the new coefficient sequence as

follows. A
Cjs tjtd < 8
&= (L=l (B)ejo1 +laj(B)es, t; <t <tjra
Cj—1, 2? < fj

Example: Given the spline defined by

t=[-3 -2 -1 1 5 6,
c=[48 12 24].

insert a new knot £ = 0. We compute

c 48 12 24
wy : 2/3 1/6
c: 48 24 14 24

The Greville abscissae are

t* = —1.5,0,3, Dbefore insertion and

t* =—1.5,—.5,.5,3, after insertion.
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X10— Given the spline curve defined by

t = [07 07 07 0’ 1737 57 5’ 5’ 5]7

L_[-1 01234
0 01 1 0 1

compute the new control polygon after insertion of the new knot ¢ := 2. (Hints:
there are knots xg, ..., zg and 6 intervals, hence 9 = 6 + d. For a curve we do
not display the Greville abscissae but only the (z,y) pairs.)

X10— Given the spline function of degree 3 with coefficients ¢ and t = toy =
...,—2,0,2,... give the coefficient sequence after insertion of knots at every odd
integer; that is after changing the knot sequence to t.

The convex hull property

X3— Show that for t; < u < tj41, s(u) is a convex combination of ¢;_g4, ..., ¢;.

Variation diminuition

The number of strong sign changes in any increasing sequence of values py(x1), ..., pa(z;)
of the spline is less than the number of strong sign changes in the sequence of
coefficients ¢;. This is often written as

S57(s) <57 (0),
or ST(s(t1),...,8(tn)) < S~ (c1,...,¢p) for t strictly increasing. Proof: insert
t; into the knot sequence to obtain new coefificnets by convex averaging.

Shape preservation

A spline crosses any straight line no more often than its control polygon. Proof:
S(s—10) <S(c—¥).

Xs3— Show that shape preservation implies that a spline is monotone if its control
polygon is monotone. X3— Show that shape preservation implies that a spline
is convex if its control polygon is convex.

Alternative definitions of B-splines

(that allow the definition of splines in several dimensions)
1. Hermite-Genocchi formula: B-spline as distribution.

/Bd(x, w)o(u)du
R

=d! d(Az)dA
A(d)
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where A(d) is the d-simplex spanned by
€y, €1,--.,ed, €g = 0, e; the 7th unit vector.

2. Geometric interpretation. With 7" a d-simplex such that the first com-
ponent of each vertex is one of the knots x; and 7 the projection RY — R :
(21, &9, ...,24) = x1. Then

By(z,u) :=volg_1(T N (7~ (w)))/volag(T).



